

Enhanced In Situ Soil Analysis

Pieter Buffel Pieter.buffel@enissa.com

Fedexsol 27/05/2015

- 1. Introduction: DNAPL's
- 2. EnISSA MIP
- 3. Soil characteristics
- 4. Case studies

1. Introduction

Chlorinated Solvents and DNAPL

1.1 CVOC transport

Chlorinated volatile organic compounds:

•Density > water

- Migrate to substantial depths → DNAPL (Dense non-aqueous phase liquids)
 - residual DNAPL ("blobs and ganglia")
 - pooled DNAPL (continuous product)

- •Low K_{oc} values: no strong retardation \rightarrow high mobility
 - → extended plumes

CVOC transport

- DNAPL migration is strongly dependent on differences in soil characteristics
 - Finer grained material (capilary resistance):
 - acts as barrier → DNAPL pooling & lateral spreading
 - Matrix diffusion and advection: DNAPL is 'stored' in smaller pores.

- Vertical cross-section of DNAPL and plumes
- results from monitoring wells

•

1.2 CVOC Characteristation

• Interpretation of CSM based on those results:

classic sampling strategies (monitoring wells)

- + low detection level
- + broad analysis spectrum
- Decision making: Time inefficient
- Large contaminated area: large information gaps

Slecht doorlatende bodemlagen Bodemluchtverontreiniging Zones met puur product (retentiezone)

• Sampling well

- The scale of measurement must be appropriate for the scale of heterogeneity:
 - hydraulic conductivity and contaminant concentration can vary on small scale
- → Conventional monitoring wells are not optimal investigation tools :
 - Wells yield depth-integrated data
 - Cannot discern heterogeneities that control contaminant transport
 - Limited sampling points

- EPA → High Resolution Site Characterisation (HRSC)
 - scale-appropriate measurement and data density
 - to define contaminant distributions in environmental media with greater certainty,
 - supporting faster and more effective site cleanup

classic ↔ Current "On Site" soil investigation

- + information in the field
- + detailed soil profiles = high vertical resolution
- information quality not equal to classic sampling
 - Detection limit > clean up values
 - Sum detectors (indistinct)

decrease UNCErtainty in conceptual site model by combining *"Best of both worlds"* in one method.

EnISSA project:

Combining best of both worlds

- + low detection level
- + broad analysis spectrum
- + information in the field
- + detailed soil profiles

Development of a **fast** in situ technology with detection limits and selectivity comparable to classis sampling methods.

2. EnISSA-MIP

A powerfull tool for high resolution site characterisation

Membrane Interface Probe

© Geoprobe

2.1 MIP

<u>Membrane</u> Interface Probe

- Screening tool for VOC
 - Cone: heated block and hydrophobic semi permeable membrane

- Volatilization and diffusion through membrane
- Inert carrier gas & transport to detector

Typical setup: Combination of three detectors:

- * Dry electrolytic detector (DELCD) or Halogen specific detector (XSD)
- * Photo ionisation detector (PID)
- * Flame ionisation detector (FID)

PID, FID, DELCD & XSD

- → Summation-detectors: no information on individual contaminants: polluent cocktails!
- \rightarrow respons (µV signal) is component specific \clubsuit quantification difficult
- \rightarrow detection limit > groundwater clean-up values in Flanders : $\mu g/I$
- Plume delineation is impossible

2.2 MIP → EnISSA MIP

EnISSA MIP

- MIP with dedicated **GC-MS detection** combined with proprietary contaminant sampling technology
- GC-MS: Optimized for field measurements:
 - * ruggedized
 - * cycle/analysis time: 1 min
 - → 1 measurement per 30 cm at probing speed of 30 cm/min
 - * up to 12 compounds simultaneously

Highly detailed profiles for individual compounds on ppb level

Flange: 10 - 200 up1 200 - 500 up1 500 - 1000 up1 1000 - 5000 up1 5000 - 10 000 up1 10 000 - 100 000 up1 - 10 000 up1

Range: 10 - 200 ug/l 200 - 500 ug/l 500 - 1000 ug/l 1000 - 5000 ug/l 5000 - 10 000 ug/l 10 000 - 100 000 ug/l >10 000 ug/l

entire delineation of contamination: source + plume

EnISSA MIP measures on **ppb** level

 \rightarrow source and plume

(Conventional MIP measures on sub-ppm level)

- Order of magnitude = groundwater sample → high quality screening tool -

"On site" information on pollution cocktails:

EnISSA MIP measures **individual compounds** in contrast to the sum-detectors used in conventional MIP

- Each 30 cm up to 12 compounds can be distinguished -

strategic sampling well locations:

The entire delineation of source and plume obtained by EnISSA MIP makes it possible to place sampling wells at strategic locations **reducing sampling costs and time**.

High resolution data is essential to characterize chlorinated solvents

2.3 Soil characteristics: EC

Electrical Conductivity (EC)

2.3 Soil characteristics: CPT

Cone Penetrometer Test (CPT)

•

•

•

- Pushed without hammering
 - Anchoring of Geoprobe
 - 20 ton hydraulic push truck

- Local friction
- Point Resistance
- Classification in 12 soil categories

2.3 Soil characteristics: CPT

30

- MiHPT = MIP + HPT
- Injection of continuous water flow
 - injection pressure is an indication of the local permeability of the soil.
 - A real-time detailed pressure and flow log is generated for each probing location giving more insight in hydrogeology.
 - Combined with dissipation tests or groundwater level data, an Estimated conductivity (K [m/day]) can be calculated based on an empirical model.

Case studies

- 1. Weaving mill Kortrijk OVAM (Citychlor demo)
- 2. Wool production Mol
- 3. Gas station, MTBE plume

3. Case studies

Kortrijk – Weaving Mill Antwerp region - Wool Factory Antwerp region- Service station Waregem – Metalurgy site

Case Study 1

Kortrijk: Former weaving mill: Demonstration project OVAM Contamination: PCE, TCE, DCE, VC, 111TCA, BTEX, ... 6 EnISSA-MIP locations compared to soil samples and wells

Full report at <u>www.citychlor.eu</u>

Original Monitoring Well Screen 9-10 m-mv: PCE: < 0,5 ug/l TCE: < 0,5 ug/l DCE: < 0,5 ug/l VC: 94 ug/l

EnISSA-MIP next to well:

EnISSA-MIP next to well and new targeted well:

max EnISSA vs groundwater sample

groundwater sample (ug/l)

* contribution of the adsorbed contaminants which will be measured by EnISSA but not by the groundwater samples

* EnISSA results vs. groundwater results: order of magnitude is comparable \rightarrow semi-quantitative or better?

Case Study 1: Cost comparison

Case Study 2

Antwerp region: Former Wool factory

Contamination: PCE, TCE, DCE, VC

Incomplete CSM based on 20 monitoring wells -> EnISSA campaign

•Profound migration of PCE and breakdown products

•Variable depths

- → Easily missed
- → Full profiles are necesarry to completely and correctly characterise PCE contamination

Monitoring well PCE

EnISSA-MIP PCE

"It's far better to be approximately correct with a huge dataset than precisely wrong with a limited dataset"

Monitoring well PCE

EnISSA-MIP PCE

Conceptual Site Model

Are We Effectively Using Data or Confusing Data?

Case Study 3

Former Service Station

Former service station, Antwerp region

Contamination: BTEX and MTBE

- Leaking underground storage tank
- Tank and source removed
- Monitoring wells indicate presence of BTEX and MTBE plume at profound level
 - ➔ EnISSA MIPs to delineate plume

Case Study 3

- MTBE difficult parameter
 - → feasability test
- 3 rounds of EnISSA MIP probings
- MTBE detected up to border of canal
- monitoring wells installed to confirm results
- Results imported in 3D software

MTBE

Benzeen

Case Study 4

- Waregem
 - Site description:
 - A small metallurgy company in the 50s-70s
 - Perchloroethene as a degreasing agent
 - Current residential area
 - Geology
 - sand/loam up to presumably 15-20 m-bgl
 - Below a clay layer is expected

ange: 10 - 200 ug/l 200 - 500 ug/l 500 - 1000 ug/l 1000 - 5000 ug/l 5000 - 10 000 ug/l 10 000 - 100 000 ug/l

Case Study 4

EnISSA MIP

entire delineation of contamination: source + plume

EnISSA MIP measures on **ppb** level

 \rightarrow source and plume

(Conventional MIP measures on sub-ppm level)

- Order of magnitude = groundwater sample → high quality screening tool -

"On site" information on pollution cocktails:

EnISSA MIP measures **individual compounds** in contrast to the sum-detectors used in conventional MIP

- Each 30 cm up to 12 compounds can be distinguished -

strategic sampling well locations:

The entire delineation of source and plume obtained by EnISSA MIP makes it possible to place sampling wells at strategic locations **reducing sampling costs and time**.

High resolution data is essential to characterize chlorinated solvents

• An illustrated handbook of DNAPL transport and fate in the subsurface

http://www.cluin.org/conf/itrc/dnaplpa/dnapl handbook final.pdf

• High resolution site characterisation

http://clu-in.org/characterization/technologies/hrsc/hrscintro.cfm https://clu-in.org/characterization/technologies/hrsc/pdfs/HRSC-Participant-Manual-NARPM-2014.pdf

www.enissa.com

www.EnISSA.com info@EnISSA.com

